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CONTACT HEAT TRANSFER IN GRANULAR MATERIAL UNDER VACUUM
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By integration of the Laplace equation, equationshave been obtained
for the temperature field and the thermal resistance of a sphere with
two contact areas. A formula has been derived for determining the
contact thermal conductance of granular materials,

In a granular material under vacuum, heat trans-
fer is accomplished by two means: conduction and
radiation. In many cases heat transfer by the first
means is predominant, This has been examined in
references [1-3].

Transfer of heat in a granular material by conduc-
tion occurs through the areas of contact between ad-
joining grains. To calculate heat transfer in this case
we first find the temperature field in a sphere with
two contact areas (Fig. 1). We shall take as given the
radius of the sphere ry and of the contact area a, For
simplicity, we will assume that the contact spot is not
plane, but rather part of the surface of the sphere, an
assumption which will not introduce an appreciable
error for a. For example, with @ = 0,2, the deforma-
tion of the sphere when a plane contact spot is formed
is only 0.02 1y, and the area of the plane spot is less
than that of the corresponding section of the spherical
surface by 1% . We also consider, as in the case of
a plane contact spot, that @ = sin ¢,

The solution of the problem reduces to integration
of the Laplace equation in spherical coordinates
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The solution of (1) has the form
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where Pi(cos¢) are Legendre polynomials of the first
kind of k-th order. : ; :

The function f(#) may be expanded in a series of
Legendre polynomials,
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Fig. 1. Heat transfer scheme
for a sphere with two contact
areas.

After finding the derivative 8T/8p from (3), and
equating it to f(#) when p =1, we obtain a relation be-
tween the coefficients ay and bi:

We determiné the coefficients by from (5):
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To calculate the integrals in (7) we use a recur-
rence relation for the functions Pp(x):
@k +1) P, (%) = Prg1 (%) — Pe—r (x). (8)
Integrating in the range 1 to cos ¢, we obtain
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j‘ P, (x)dx=

1

2k -1 ‘[P"“ (c0s @) — Py (cos (p)} - (9)

The second integral in (7) is equal in value to the first,



20

Both integrals have identical signs for odd k and op-
posite signs for even k. Therefore the even coeffi-
cients by are zero. Finally, we find

Byney = ‘Z‘ [Pan (COS @) —Pypa(cos )], (10)

T
where

n=k—1)2 (k=1,3,5,..).

Fig. 2. Temperature field

in a sphere with two con~

tact areas, with o = 0.2
and q/AT = 1000,

Taking (6) into account; we obtain a formula for the
temperature field in the sphere
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It is more convenient to perform the calculations
from (11) using tables of Legendre polynomials (see,
for example, [4]). The convergence of the series in
(11) deteriorates as p ~ 1l and 4 < ¢,

As an example we will find the temperature field
of a sphere with two contact areas, for which o = 0, 2.
Then (11) takes the form

T o= }i [0.0600p P, (cos §) + 0.0421p8 P, (cos 8) -+

'T
+0.0378 p° P; (cos 9) +
+0.0319p7 P; (cos #) +-0.0258p" Pg{cos #) + ...].
The temperature field in the sphere, constructed from

this relation, is shown in Fig, 2, making the assump-
tion that /Ay = 1000,
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We will determine the thermal resistance of a
sphere with two contact areas. For simplicity of cal-
culation we assume that the temperature of the contact
area is-equal to the arithmetic mean of the tempera-
tures at the center and at the periphery of the area,
an assumption that will not introduce appreciable er-
ror into the calculation. As shown in [5], in the case
of contaet heat transfer, the error is comparatively
small even when the boundary condition of constant
heat flux is replaced by the condition of constant tem-
perature over the whole of the contact area:
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The temperature at the equatorial section of the sphere
is zero. Therefore,

R, =AT/Q, = 2T /qnsin g,

and, in final form,
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The thermal resistance of a circular contact area
on a semiinfinite body is equal to [5]

R. =l1/4ah, (15)

under. the condition of constant temperature on the

area, and
RY, =8/3=2ah, (15")

under the condition of constant heat flux at the area.
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Fig. 3. Dependence of the ratio of

thermal resistance of a sphere and

a semiinfinite body with a contact
area on the radius of the area.

The values of RY and R differ by 8%. The ratio
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depends only on the relation @ = a/r; = sin ¢ and in-
dicates an increase of contact thermal resistance on
transition from a semiinfinite body to a sphere.

The relation given by (16) is shown in Fig. 3, The
thermal resistance of a sphere with two contact spots
is somewhat greater than the resistance of the two
contact spots on a semiinfinite body, and approaches
the value of the latter as a/r, decreases.

In [3] the assumption was made that the thermal
resistance of a spherical particle at the point of con-
tact is equal to the thermal resistance of a semiin-
finite body at the point of contact, Calculation of this
resistance was carried out incorrectly, and the re-
sulting erroneous value obtained was

"R=1/2ra),,

which is /2 times less than R'Eo, calculated from
(15). :

We now turn to the determination of the thermal
conductivity of the granular material. We assume that
the grains are spherical. The thermal conductivity of
the granular material is '

A = Qh/sAT, : (17)

Each sphere in a bed of spherical particles touches
N neighboring spheres, and therefore N/3 contacts
are associated with the direction of each of three mu-~
tually perpendicular axes, and N/6 contacts are as-
sociated with each of the two opposite directions along
one of the axes. In fact, the sphere cannot make con-
tact in any direction with more than one sphere. The
physical meaning of the above statement is that the
numerical value of the vector heat flux through one
sphere in the direction of the temperature gradient is

Q] = QN /6. (18)

The corresponding value of the quantity h is 2r;. The
bed area, taken over one grain, is related to the other
bed parameters by the relation

n —=1—4n I'S/BhS, (19)
whence
s =27 rY/3 (1—m). (20)

The theoretical values of N are known only for
certain types of regular packing, given in the table,
It may be supposed that in real random packing the
particles are located uniformly throughout the volume
and the number of contacts is determined by the por-
osity of the packing. The dependence of the number
of contacts on the volume occupied by the spheres
may be expressed, for m > 0.3, by the empirical re-
lation

N =11.6(1—m), (21)
valid for regular packing with coordination numbers

4, 6, and §.
When a pressure acts on a bed of spherical parti-
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cles, contact areas are formed at their points of con-
tact, the radius of the areas being given by the Hertz
relation -

3/ . .
3 1—pt
=1/ 55 e (22)

Characteristics of Regularly Packed

‘ - Spheres

‘ : Coordina- | Porosity,

Type of packing tion mumber| % ¥
Densest (hexagonal
close-packed, face-
centered cubic) 12 25.95
Body-centered cubic 8 31.98
Simple cubic 6 47 .64
Structure of dia-

mond and ice 4 65.99

We will find the mean value of Py, taking account of
(20) and (21):

p_ P _
YUTNe
20 12 6 0.345 .
— = 'A_~f2. 23
g 31=m) 11.6(0—m) (—mp prrg (23)
Substituting the value of P; into (22), we obtain
a =0.93r, y/ (I— ) p/E (1—m)". (24)

The heat ﬂuk through one sphere is
Q=ATN/R;.6. (25)

Calculations according to (24) show that for specific
load values up to 0.1 MN/m® for ordinary granular
materials with porosity 40—50%, the ratio a/ry does
not exceed 0,02, while for insulating materials with
porosity up to 95 %, it is close to 0,1. It may be seen
from Fig. 3 that in these cases, to an accuracy suf-
ficient for technical purposes, the quantity Rg in (25)
may be replaced by 2R,,. When the specific load is
increased, formula (14) or Fig. 3 must be used to
find Rg.

Substituting (15'), (20), (24) and (25) into (17), we
finally find

A <302 (1—my' A pu e (26)

Reference [6] gave the following experimental val-
ues of thermal conductivity of sand with grain size
less than 0.2 mm and of glass beads of diameter 4.8
mm, under vacuum and at mean temperature of 338°K:

Thermal conductivity, mW/m - degree

No load with load N .
2. Ap —lq
(Fa) 0.1 MN/m® (1)
sand 3.64 36.0 32.1
Glass beads 11.0 0.0 0.0

The characteristics of the materials were not given
in the paper. Assuming for sand the approximate val-
ues m = 0,4; E =510 N/m?® and Ap =3 W/m: de-
gree, we find from (26) that A = 59 mW/m - degree.
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For glass beads with Ap = 1.0 W/m . degree and the
same values of the other parameters, we obtain A =
=19.7 mW/m . degree. The larger discrepancy be-
tween the calculated and experimental values in the
first case may be due to deviation of the shape of the
sand particles from spherical,

In [7] a determination was made of the thermal
conductivity under load for silica aerogel of density
120 kg/m® under vacuum and at a mean temperature
of 307° K. A comparison is made below of the exper-
imental data and the calculated values (in calculating
the variation of thermal conductivity with load, an
initial value of A at 0. 037 MN/m® was assumed):

Load, MN/m?

Aexps mW/m - degree
Acalc, mW/m - degree

0.0028 0.037 0.105
5.31 5.86 6.28

5.45 5.86 6.15

For the aerogel AT was taken to be equal to A for
amorphous silica, i.e., 1.3 mW/m - degree. The
porosity .of the aerogel m = 0,95 was found from its
density.

Thus, relation (26) is in satisfactory agreement
with the experimental data, and may be used for cal-
culation of contact thermal conductivity of granular
materials under vacuum.

NOTATION:

E—modulus of elasticity; h—height of bed of grains
corresponding to temperature difference AT; m—po-~
rosity; p—specific compressive force on granular
material in direction of temperature gradient; Pj—
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force acting on one contact area; Q;—heat flux through
contact area; g—specific heat flux; Rg—thermal re-
sistance of a sphere with two contact areas; s—area
in grain bed corresponding to a single grain; @ = a/ry—
dimension less radius of a contact area; Ap—thermal
conductivity of sphere material; u—Poisson's ratio;

p = r/rg—dimensionless sphere radius.
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